1个人简介

许灵达博士毕业于中国科学院数学与系统科学研究院,师从黄飞敏研究员,后在清华大学与香港理工大学从事博士后研究工作,合作导师分别为于品教授与杨彤教授。主要从事非线性偏微分方程的研究


2研究兴趣

流体动力学与动理学方程,激波的形成理论,流体的转捩阈值理论。


3教育经历


博士/ 2015-2020

本科/ 2011-2015   

中国科学院大学

厦门大学

应用数学(PDE

数学与应用数学



4工作经历


2023-2025        

2020-2023                            

 香港理工大学


清华大学

博士后


博士后



5荣誉奖项

• 20239月,第五届中国青年PDE论坛优秀论文奖提名;清华大学优秀益友学者

• 20143月,全国大学生数学竞赛一等奖(第12名)

• 201311月,第五届全国大学生数学竞赛(初赛)一等奖(第1名)

• 201911月,博士研究生国家奖学金

• 2012–2015年,入选优秀本科生培养计划并获多项奖学金


6出版物

[1] Feimin Huang, Lingda Xu and Qian Yuan, Asymptotic stability of planar rarefaction waves under periodic perturbations for 3-d Navier-Stokes equations, Adv. Math. 404 (2022), Paper No. 108452.

[2] Feimin Huang and Lingda Xu, Decay rate toward the traveling wave for scalar viscous conservation law, Commun. Math. Anal. Appl., 1 (2022), pp. 395-409.

[3] Lingjun Liu, Danli Wang and Lingda Xu, Asymptotic stability of the combination of a viscous contact wave with two rarefaction waves for 1-D Navier-Stokes equations under periodic perturbations. J. Differ. Equations., 346, 254-276 (2023).

[4] Meichen Hou, Lingjun Liu, Shu Wang and Lingda Xu, Vanishing viscosity limit to the planar rarefaction wave with vacuum for 3-D full compressible Navier-Stokes equations with temperature-dependent transport coefficients. Math. Ann. Volume 390, pages 3513–3566, (2024)

[5] Feimin Huang and Lingda Xu, Decay rate toward the planar rarefaction wave for scalar viscous conser vation law in several dimensions. Commun. Math. Res., to appear.

[6] Lingjun Liu, Guiqin Qiu, Shu Wang, Lingda Xu, Optimal decay rate to the contact discontinuity for Navier–Stokes equations under generic perturbations. Appl. Math. Lett. 163(2025). , Paper No. 109461, 6 pp.

[7] Lin Chang, Lingjun Liu and Lingda Xu, Nonlinear stability of planar shock wave to 3-D compressible Navier-Stokes equations in half space with Navier Boundary conditions. (Nonlinreaity, 2025.)

[8] Guiqin Qiu and Lingda Xu, Zero dissipation and time decay rates to the planar rarefaction wave for 3-D compressible Euler equation in the whole space. ( Journal of Differential Equations2025)

[9] Fei Wang, Lingda Xu and Zeren Zhang,The stability threshold for 3D MHD equations around Couette with rationally aligned magnetic field. ( SIAM. JMA., Accepted)